128 research outputs found

    Dual Node and Edge Fairness-Aware Graph Partition

    Full text link
    Fair graph partition of social networks is a crucial step toward ensuring fair and non-discriminatory treatments in unsupervised user analysis. Current fair partition methods typically consider node balance, a notion pursuing a proportionally balanced number of nodes from all demographic groups, but ignore the bias induced by imbalanced edges in each cluster. To address this gap, we propose a notion edge balance to measure the proportion of edges connecting different demographic groups in clusters. We analyze the relations between node balance and edge balance, then with line graph transformations, we propose a co-embedding framework to learn dual node and edge fairness-aware representations for graph partition. We validate our framework through several social network datasets and observe balanced partition in terms of both nodes and edges along with good utility. Moreover, we demonstrate our fair partition can be used as pseudo labels to facilitate graph neural networks to behave fairly in node classification and link prediction tasks

    In-Context Operator Learning with Prompts for Differential Equation Problems

    Full text link
    This paper introduces a new neural-network-based approach, namely In-Context Operator Networks (ICON), to simultaneously learn operators from the prompted data and apply it to new questions during the inference stage, without any weight update. Existing methods are limited to using a neural network to approximate a specific equation solution or a specific operator, requiring retraining when switching to a new problem with different equations. By training a single neural network as an operator learner, we can not only get rid of retraining (even fine-tuning) the neural network for new problems, but also leverage the commonalities shared across operators so that only a few demos in the prompt are needed when learning a new operator. Our numerical results show the neural network's capability as a few-shot operator learner for a diversified type of differential equation problems, including forward and inverse problems of ordinary differential equations (ODEs), partial differential equations (PDEs), and mean-field control (MFC) problems, and also show that it can generalize its learning capability to operators beyond the training distribution.Comment: The second and third authors contributed equall

    A review of knowledge management about theoretical conception and designing approaches

    Get PDF
    Purpose - The main purpose of this paper is to conduct an in-depth theoretical review and analysis for the fields of knowledge management (KM) and investigate the future research trend about KM. Design/methodology/approach - At first, few theoretical basis about KM which include definitions and stages about KM have been summarized and analyzed. Then a comprehensive review about the major approaches for designing the KM system from different perspectives including knowledge representation and organization, knowledge sharing and performance measure for KM has been conducted. Findings - The contributions of this paper will be useful for both academics and practitioners for the study of KM. Originality/value - For this research, the focus is on conducting an in-depth theoretical review and analysis of KM

    Modelling and Performance Analysis of the Over-the-Air Computing in Cellular IoT Networks

    Full text link
    Ultra-fast wireless data aggregation (WDA) of distributed data has emerged as a critical design challenge in the ultra-densely deployed cellular internet of things network (CITN) due to limited spectral resources. Over-the-air computing (AirComp) has been proposed as an effective solution for ultra-fast WDA by exploiting the superposition property of wireless channels. However, the effect of access radius of access point (AP) on the AirComp performance has not been investigated yet. Therefore, in this work, the mean square error (MSE) performance of AirComp in the ultra-densely deployed CITN is analyzed with the AP access radius. By modelling the spatial locations of internet of things devices as a Poisson point process, the expression of MSE is derived in an analytical form, which is validated by Monte Carlo simulations. Based on the analytical MSE, we investigate the effect of AP access radius on the MSE of AirComp numerically. The results show that there exists an optimal AP access radius for AirComp, which can decrease the MSE by up to 12.7%. It indicates that the AP access radius should be carefully chosen to improve the AirComp performance in the ultra-densely deployed CITN

    Domain Adaptive Code Completion via Language Models and Decoupled Domain Databases

    Full text link
    Large Language Models (LLMs) have demonstrated remarkable performance in code completion. However, due to the lack of domain-specific knowledge, they may not be optimal in completing code that requires intensive domain knowledge for example completing the library names. Although there are several works that have confirmed the effectiveness of fine-tuning techniques to adapt language models for code completion in specific domains. They are limited by the need for constant fine-tuning of the model when the project is in constant iteration. To address this limitation, in this paper, we propose kkNM-LM, a retrieval-augmented language model (R-LM), that integrates domain knowledge into language models without fine-tuning. Different from previous techniques, our approach is able to automatically adapt to different language models and domains. Specifically, it utilizes the in-domain code to build the retrieval-based database decoupled from LM, and then combines it with LM through Bayesian inference to complete the code. The extensive experiments on the completion of intra-project and intra-scenario have confirmed that kkNM-LM brings about appreciable enhancements when compared to CodeGPT and UnixCoder. A deep analysis of our tool including the responding speed, storage usage, specific type code completion, and API invocation completion has confirmed that kkNM-LM provides satisfactory performance, which renders it highly appropriate for domain adaptive code completion. Furthermore, our approach operates without the requirement for direct access to the language model's parameters. As a result, it can seamlessly integrate with black-box code completion models, making it easy to integrate our approach as a plugin to further enhance the performance of these models.Comment: Accepted by ASE202

    Examining how internet use and non-farm employment affect rural households’ income gap? Evidence from China

    Get PDF
    The objective of this study is to assess the effect of Internet use on the income disparity between rural households and to determine how Internet usage can be used to reduce this income gap. We use the Recentered Influence Function Regression (RIF) and data from the China Family Panel Studies (CFPS) conducted by the China Social Science Survey (CSSS) center at Peking University to make the results of regression estimation more reliable. The results reveal that Internet use can make rural households’ income gap shrink considerably, and that the degree of non-farm employment among rural families has a mediating effect between Internet use and the income disparity of farm households. In addition, the Eastern region experiences a stronger mitigating effect from Internet use, whereas ethnic minorities find out no such mitigating effect. This study expands the scope of income disparity theory, provides new ideas for the construction of digital villages, and identifies new empirical evidence and decision-making grounds for improving the livelihoods of rural households and narrowing the income gap between rural households
    • …
    corecore